R Markdown

R Markdown

 R's Secreet Ingredient

R Markdown

R 's Special Sauce

R Markdown

An Incomplete History

R Markdown

Stuff I'm Working $O n$ and Want To Show Off

About Me

, Hi, I'm Garrick Aden-Buie

About Me

, Hi, I'm Garrick Aden-Buie

- @ grrrck

About Me

, Hi, Hi, I'm Garrick Aden-Buie

- @grrrck

畳 garrickadenbuie.com

About Me

武 Hi, I'm Garrick Aden-Buie

- @grrrck

贯 garrickadenbuie.com
® RStudio: gradethis, learnr

What is R Markdown?

(wrong answers only)
two

Break Free From Plastic engaged 14,734 volunteers in 55 countries to conduct 575 brand audits. These volunteers collected 346,494 pieces of plastic waste.

Break Free From Plastic engaged 14,734 volunteers in 55 countries to conduct 575 brand audits. These volunteers collected 346,494 pieces of plastic waste.

A brief history of rmarkdown

A brief history of literate programming

Let us change our traditional attitude to the construction of programs:

Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to human beings what we want a computer to do.

I was coerced like everybody else into adopting the ideas of structured programming, because I couldn't bear to be found guilty of writing unstructured programs.

Now I have a chance to get even ... surely nobody wants to admit writing an illiterate program.

This language and its associated programs have come to be known as the WEB system.

I chose the name WEB partly because it was one of the few three-letter words of English that hadn't already been applied to computers.

Figure 1. Dual usage of a WEB file.

The result of the program will be to produce a list of the first thousand prime numbers．．．

〈Program to print the first thousand prime numbers 2〉 \equiv program print＿primes（output）；
const $m=1000$ ；
〈Other constants of the program 5＞
var 〈Variables of the program 4〉
begin 〈Print the first m prime numbers 3〉； end．

We shall proceed to fill out the rest of the program by making whatever decisions seem easiest at each step．

So let＇s come up with a list of prime numbers．
\langle Print the first m prime numbers 3$\rangle \equiv$
〈Fill table p with the first m prime numbers 11〉〈Print table p 8〉

Now that the appropriate auxiliary variables have been introduced, the process of outputting table p almost writes itself.

```
\Print table p 8\rangle \equiv
begin page_number <- 1; page_offset = 1;
while page_offset \leqm do
    begin <Output a page of answers 9〉;
    page_number <- page_number + 1;
    page_offset <- page_offset + rr * cc;
    end;
end;
```


Tolga Mırmırık

@mirmirik
Always...

A brief history of
literate programming
in R
sweave

sweave

\documentclass\{article\}\usepackage\{amsmath\}\usepackage\{amscd\}\usepackage[utf8]\{inputenc\}\begin\{document\}}\SweaveOpts\{concordance=TRUE\}undefinedundefinedundefinedundefinedundefinedundefined

\title\{An Sweave Demo\}

\author\{Charles J. Geyer\}
\maketitle
\%

sweave

This is a demo for using the \verb@Sweave@ command in R. To get started make a regular \LaTeX\ file (like this one) but give it the suffix \verb@.Rnw@ instead of \verb@.tex@ and then turn it into a \LaTeX\ file (\verb@foo.tex@) with the (unix) command \begin\{verbatim\} }
R CMD Sweave foo.Rnw
\end\{verbatim\} }
Well, we can now include R in our document. Here's a simple example <<two>>=
$2+2$
@

sweave

```
Figure~\ref{fig:one} (p.~\pageref{fig:one})
is produced by the following code
<<label=fig1plot,include=FALSE>>=
plot(x, y)
abline(out1)
@
\begin{figure}
\begin{center}
<<label=fig1,fig=TRUE,echo=FALSE>>=
<<fig1plot>>
@
\end{center}
\caption{Scatter Plot with Regression Line}
\label{fig:one}
\end{figure}
Note that \verb@x@, \verb@y@, and \verb@out1@ are remembered from
the preceding code chunk. We don't have to regenerate them.
All code chunks are part of one R ``session''.
```


sweave

```
Figure~\ref{fig:one} (p.~\pageref{fig:one})
is produced by the following code
<<label=fig1plot,include=FALSE>>=
plot(x, y)
abline(out1)
@
\begin{figure}
\begin{center}
<<label=fig1, fig=TRUE, echo=FALSE>>=
<<figlplot>>
@
\end{center}
\caption{Scatter Plot with Regression Line}
\label{fig:one}
\end{figure}
Note that \verb@x@, \verb@y@, and \verb@out1@ are remembered from
the preceding code chunk. We don't have to regenerate them.
All code chunks are part of one R '`session''.
```


sweave

```
Figure~\ref{fig:one} (p.~\pagere
is produced by the following cod
<<label=fig1plot,include=FALSE>>
plot(x, y)
abline(out1)
@
\begin{figure}
\begin{center}
<<label=fig1, fig=TRUE, echo=FALSE>>=
<<figlplot>>
@
\end{center}
\caption{Scatter Plot with Regression Line}
\label{fig:one}
\end{figure}
Note that \verbaxa, \verbaya, and \verbaout1@ are remembered from
the preceding code chunk. We don't have to regenerate them.
All code chunks are part of one R ``session''.
```


sweave

```
Figure~\ref{fig:one} (p.~\pageref{fig:one})
is produced by the following code
<<label=fig1plot,include=FALSE>>=
plot(x, y)
abline(out1)
@
\begin{figure}
\begin{center}
<<label=fig1,fig=TRUE,echo=FALSE>>=
<<figlplot>>
@
\end{center}
\caption{Scatter Plot with Regression Line}
\label{fig:one}
\end{figure}
Note that \verb@x@, \verb@y@, and \verb@out1@ are remembered from
the preceding code chunk. We don't have to regenerate them.
All code chunks are part of one R ``session''.
```


sweave

```
Figure~\ref{fig:one} (p.~\pageref{fig:one})
is produced by the following code
<<label=fig1plot,include=FALSE>>=
plot(x, y)
abline(out1)
@
\begin{figure}
\begin{center}
<<label=fig1,fig=TRUE,echo=FALSE>>=
<<figlplot>>
@
\end{center}
\caption{Scatter Plot with Regression Line}
\label{fig:one}
\end{figure}
Note that \verb@xa, \verbaya, and \verb@out1@ are remembered from
the preceding code chunk. We don't have to regenerate them.
All code chunks are part of one R ``session''.
```


sweave

```
Figure~\ref{fig:one} (p.~\pageref{fig:one}
is produced by the following code
<<label=fig1plot,include=FALSE>>=
plot(x, y)
abline(out1)
@
\begin{figure}
\begin{center}
<<label=fig1,fig=TRUE,echo=FALSE>>=
<<figlplot>>
@
\end{center}
\caption{Scatter Plot with Regression Line
\label{fig:one}
\end{figure}
Note that \verb@xa, \verbaya, and \verb@ou
the preceding code chunk. We don't have t
All code chunks are part of one R ``sessio
```


Figure 1: Scatter Plot with Regression Line
knitr
knitr

knitr

Yihui Xie - Interview by DataScience.LA at useR 2014

knitr

1. Write in markdown
2. Cleaner chunk and inline R code syntax
3. Easy figures
4. Still literate

knitr

Let's write another program that computes prime numbers, called `prime_numbers(
prime_numbers <- function(m = 1) \{ <<prime-numbers>>
\}

knitr

```
Let's write another program that computes prime numbers, called `prime_numbers(
prime_numbers <- function(m = 1) {
    <<prime-numbers>>
}
}..
```

Let's write another program that computes prime numbers, called prime_numbers ().

```
prime_numbers <- function(m = 1) {
    <<prime-numbers>>
}
```


knitr

Well, we can now include R in our document. Here's a simple example.
-' $\{r$ two $\}$
$2+2$

knitr

Well, we can now include R in our document. Here's a simple example.
" ' $\{r$ two $\}$
$2+2$

Well, we can now include R in our document. Here's a simple example.
$2+2$
\#\# [1] 4

knitr

Figure 1 is produced by the following code

```
```{r fig1plot, fig.width = 4, fig.height = 4}
n <- 50
x <- seq(1, n)
y <- 3 + (1.5 * x) + (17.3 * rnorm(n))
fit <- lm(y ~ x)
plot(x, y)
par(mar = rep(0, 4))
abline(fit)
```



## knitr

For one point, `\(x\)` is ‘r $x[10] `$, $y `$ is `\(r y[10]\) ’ and we predict`y`will be`r predict(fit, list(x = 10))'.

## knitr

```
For one point, ` \(x\) ` is ` r [10]`, `y` is `r y[10]` and we predict
`y' will be ‘r predict(fit, list(x = 10))'.
```

For one point, $x$ is 10, $y$ is 26.5050704 and we predict $y$ will be 18.6470099 .
knitr with pandoc

## knitr with pandoc



You have the power to change things.
Well, at least the power to change the color of your phone.

## knitr with pandoc




## knitr with pandoc

Terminal
pandoc report.md -o report.pdf

## knitr with pandoc

Terminal
pandoc report.md -o report.docx

## knitr with pandoc

Terminal
pandoc report.md -o report.pptx

## knitr with pandoc

Terminal
pandoc report.md -o report.epub

## knitr with pandoc

Terminal
pandoc report.md -o report.html

## knitr with pandoc

Terminal
pandoc report.md -o report.html --no-highlight \}
--css assets/css/title-slide.css \}
--css assets/css/toronto-data-workshop.css
--section-divs --standalone --variable math=true

R Markdown

## R Markdown



## R Markdown



## R Markdown



## R Markdown



Works like magic
No stylus
Far more accurate
Ignores unintended tou
Multi-finger gestures
Patented!
PDF ReportsWord Documents
PowerPoint Presentations
Interactive Dashboards
Books
Websites

## Slides Like These!

rmarkdown

## rmarkdown

## rmarkdown.rstudio.com <br> -- - - - - - - - -- - - - - - - - - - - - - - -

R Markdown documents are fully reproducible. Use a productive notebook interface to weave together narrative text and code to produce elegantly formatted output. Use multiple languages including R, Python, and SQL.

## Analyze. Share. Reproduce.

Your data tells a story. Tell it with R Markdown. Turn your analyses into high quality documents, reports, presentations and dashboards.


R Markdown supports dozens of static and dynamic output formats including HTML, PDF, MS Word, Beamer, HTML5 slides, Tufte-style
epoxy

## knitr documents can write themselves

```
 {r}
years <- c(2019, 2020)
grand_total <- c(858462, 346494)
```{r plastics}
items <- paste(
    "\n- In", years, "we collected", grand_total, "pieces of plastic."
)
items
```


knitr documents can write themselves

```
    `r}
years <- c(2019, 2020)
grand_total <- c(858462, 346494)
```{r plastics}
items <- paste(
 "\n- In", years, "we collected", grand_total, "pieces of plastic."
)
items
[1] "\n- In 2019 we collected }858462\mathrm{ pieces of plastic."
[2] "\n- In 2020 we collected 346494 pieces of plastic."
```


## knitr documents can write themselves

```
 {r}
years <- c(2019, 2020)
grand_total <- c(858462, 346494)
```{r plastics, results = "asis"}
items <- paste(
    "\n- In", years, "we collected", grand_total, "pieces of plastic."
)
cat(items)
```


knitr documents can write themselves

```
    {r}
years <- c(2019, 2020)
grand_total <- c(858462, 346494)
```{r plastics, results = "asis"}
items <- paste(
 "\n- In", years, "we collected", grand_total, "pieces of plastic."
)
cat(items)
```

- In 2019 we collected 858462 pieces of plastic.
- In 2020 we collected 346494 pieces of plastic.


## knitr documents can write themselves

```
 {r}
years <- c(2019, 2020)
grand_total <- c(858462, 346494)
```{r plastics, results = "asis"}
items <- paste(
    "\n- In", years, "we collected", grand_total, "pieces of plastic."
)
cat(items)
```

- In 2019 we collected 858462 pieces of plastic.
- In 2020 we collected 346494 pieces of plastic.

Meet glue

```
paste(
    "\n- In", years, "we collected", grand_total, "pieces of plastic."
)
## [1] "\n- In 2019 we collected 858462 pieces of plastic."
## [2] "\n- In 2020 we collected 346494 pieces of plastic."
```


Meet glue

```
paste(
    "\n- In", years, "we collected", grand_total, "pieces of plastic."
)
## [1] "\n- In 2019 we collected 858462 pieces of plastic."
## [2] "\n- In 2020 we collected 346494 pieces of plastic."
```

library (glue)
glue("\n- In \{years\} we collected \{grand_total\} pieces of plastic.")
\#\# - In 2019 we collected 858462 pieces of plastic.
\#\# - In 2020 we collected 346494 pieces of plastic.

epoxy, like superglue

~ gadenbuie/epoxy

epoxy, like superglue

~ gadenbuie/epoxy

epoxy, like superglue

↔ gadenbuie/epoxy
library (epoxy)

epoxy, like superglue

```
glue("\n- In {years} we collected {grand_total} pieces of plastic.")
## - In 2019 we collected 858462 pieces of plastic.
## - In 2020 we collected 346494 pieces of plastic.
```


epoxy, like superglue

```
    {epoxy}
- In {years} we collected {grand_total} pieces of plastic.
```

- In 2019 we collected 858462 pieces of plastic.
- In 2020 we collected 346494 pieces of plastic.

epoxy, like superglue

\#tidytuesday

Break Free From Plastics

```
library(dplyr)
# plastics <- tidytuesdayR::tt_load(2021, week = 5)$plastics
plastics <- readr::read_csv(here::here("data", "plastics.csv"))
plastics_grand_summary <-
    plastics %>%
    group_by(country, year, num_events, volunteers) %>%
    summarize(
        grand_total = sum(grand_total, na.rm = TRUE),
        .groups = "drop"
    ) %>%
    arrange(year, desc(grand_total))
```


epoxy, like superglue

tibble: 107×5						
\#\#		country	year	num_events	volunteers	grand_total
\#\#		<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\#	1	Taiwan_ Republic of China ...	2019	2	31318	241292
\#\#	2	NIGERIA	2019	14	1648	161140
\#\#	3	EMPTY	2019	145	1416	113910
\#\#	4	Philippines	2019	20	3751	74032
\#\#	5	Indonesia	2019	32	6850	26618
\#\#	6	ECUADOR	2019	1	455	25430
\#\#	7	Vietnam	2019	4	400	21774
	8	Kenya	2019	5	1560	18988
\#\#	9	Cameroon	2019	10	387	17190
	10	Switzerland	2019	6	327	15002

epoxy, like superglue

```
plastics_year_summary <-
    plastics_grand_summary %>%
    group_by(year) %>%
    summarize(
        countries = n(),
        across(c(num_events, volunteers, grand_total), sum, na.rm = TRUE)
    ) %>%
    mutate(across(-(1:2), format, big.mark = ","))
```


epoxy, like superglue

```
plastics_year_summary
## # A tibble: 2 x 5
## year countries num_events volunteers grand_total
## <dbl> <int> <chr> <chr> <chr>
## 1 2019 52 483 72,236 858,462
## 2 2020 55 575 14,734 346,494
```


epoxy, like superglue

`` ${ }^{\prime}$ \{epoxy data = plastics_year_summary\}

- $\star \star$ In \{year\}**, _Break Free From Plastic_ engaged \{volunteers\} volunteers in \{countries\} countries to conduct \{num_events\} brand audits.
These volunteers collected \{grand_total\} pieces of plastic waste.

epoxy, like superglue

- In 2019, Break Free From Plastic engaged 72,236 volunteers in 52 countries to conduct 483 brand audits. These volunteers collected 858,462 pieces of plastic waste.
- In 2020, Break Free From Plastic engaged 14,734 volunteers in 55 countries to conduct 575 brand audits. These volunteers collected 346,494 pieces of plastic waste.
shinyComponents

R Markdown all the things

๒ gadenbuie/shinyComponents

Resources

Links and Further Reading

- epoxy
- shinyComponents
- R Markdown Cookbook
- Wrap Vectors in Markdown Formatting • gluedown
- Yihui Xie - New developments in knitr and R Markdown v2 (2014)
- Yihui Xie - Interview by DataScience.LA at useR 2014

